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The concepts of general topology are employed to derive a mathematical 
description of the structures of molecules. It  is shown that a topological space 
on a finite set of  points induces a unique graph and that as a consequence there 
is a uniquely determined topological space associated with every alternant 
molecule. This space is shown to be identical to the quotient space which results 
from partitioning the region of real space occupied by a molecule into atomic 
subregions. The molecular topological space is connected if and only if the 
molecule is connected and the only molecules having equivalent topological 
spaces are stereoisomers. Nonalternants are topologically distinguished from 
alternants by the fact that their graphs are not derivable from a topological 
space as are those of alternants. A set of graph-theoretical techniques for analyz- 
ing the combinatorial structure of  finite topologies is developed. The cardinality 
of the molecular topology is found to be a measure of molecular complexity and 
the cardinalities of the subspace topologies associated with the bonds of the 
molecule are accurate measures of  relative bond strength. Several empirical 
correlations between physical properties of  molecules and topological measures 
are found. 
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1. Introduction 

To what extent are the properties of  a molecule a consequence of the way in which 
its parts are linked together and to what extent do they depend on the metric 
properties of  bond lengths and angles and on the detailed dynamics of  electrons and 
nuclei ? These aspects are all inextricably bound up together in a correct quantum 
mechanical description of the structure of a molecule. In this paper we present a 
new approach to this question using the mathematical tools of topology, a subject 
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specifically designed to address those aspects of structure which are intrinsically 
nonmetric. 

Some aspects of this question have been dealt with in the past by a variety of 
approaches. Many of these have involved devising various empirical indices of 
molecular branching or complexity and seeking correlations of these with observed 
molecular properties [I ]. More mathematically sophisticated treatments have been 
based on graph theory [2], although, with the notable exception of the work of 
Hosoya [3], most of these have been essentially restatements of Hfickel molecular 
orbital theory. We believe that topology is a peculiarly appropriate tool for attack- 
ing this problem and have shown previously [4] that it is indeed possible to extract 
meaningful structural information from such an approach. 

2. Mathematical Preliminaries 

We present here the basic ideas from topology which will be employed in this paper. 
Most of these are described in detail in introductory topology texts [5], however 
some of the notions that are peculiar to spaces with a finite number of points are 
not generally found in textbooks. 

The basic concept through which topology expresses the idea of structure is that of a 
topological space. This consists of a structureless set of points X together with a 
topology J-, which is a collection of subsets of X (called open sets). As far as 
topology is concerned the points of X are undefined primitives; it is in the applica- 
tions that they are given a specific physical interpretation as, e.g., atoms or orbitals. 
The open sets impart a structure to X in the sense that points belonging to the same 
open set are regarded as being near to each other (any open set containing the 
point x is called a neighborhood of x) even though no quantitative measure of 
distance is introduced. The open sets are required to conform to the following 
restrictions: 

1. The empty set ~ and X itself are open. 
2. Arbitrary unions of open sets are open. 
3. Finite intersections of open sets are open. 

Even with these restrictions, there is still a very large number of possible topologies 
for a given set; it is largely up to one's ingenuity to select those which reflect those 
aspects of structure regarded as significant. 

A closed set is a subset of X whose complement, i.e., the set of elements of X which 
do not belong to the given set, is an open set. In spaces with a finite number of 
points the collection of closed sets also forms a topology Y*,  called the cotopology. 

Rather than dealing with the entire collection of open sets it is usually more con- 
venient to work with a smaller collection, called a basis for a topology, defined 
by the requirement that the collection of all unions of basis elements (including the 
empty union, ~ )  is equal to 3-. For finite spaces it is useful further to consider the 
irreducible basis for a topology, defined as a basis no element of which can be ex- 
pressed as a union of other basis elements. In contrast to a basis, the irreducible 
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basis of  a topology is unique. A subbasis for a topology is a collection of  sets, all of 
whose intersections taken together form a basis. Any collection of sets whose union 
is X is a subbasis for some topology. 

For an arbitrary subset A c X, the closure A is the smallest closed set such that 
A c g.  Similarly, in a finite space the smallest open set A such that A c i f  is called 
the coclosure since it is the closure of A in the cotopology. The relation of these 
concepts to that of a basis is given by the following [6]: 

1. The irreducible basis of a finite topology is equal to the collection of  coclosures 
of the one-point sets. 

2. The irreducible basis of a cotopology is equal to the collection of closures of the 
one-point sets. 

/N  
Thus, for the topology, there is an irreducible basis element B~ = (p} associated with 
each p o i n t p ~  X and, similarly, for the cotopology the irreducible basis elements 
are B* = {p}. 

A subspace of a topological space (X, ~--) is a subset Y c Xtogether with a topology 
J y  defined by 

J r  = { Y c~ 0~10t e 3-}. 

In the present context the notion of  a subspace arises in connection with the 
problem of constructing the collection of open sets of (X, ~--) which contain a 
given A c Xas a subset. This collection of sets, which is given by {~ u O~ ] O~ ~ Y}, 
is in fact isomorphic to the topology of the subspace X - A. The correspondence 
between these two collections of sets is given by the set-theoretic identity 

( X  - .4) n O, = (A  w O,) - ~4. 

A topological space (X, 3-) is said to be connected if X cannot be written as a union 
of disjoint open sets. For a space which is not connected, the connected open sets 
into which it can be partitioned are its components. A space is said to be T0 if it 
satisfies the axiom: Given any pair of distinct points, there exists an open set which 
contains one of the points but not the other. (Stronger separation axioms, e.g., the 
Hausdorff axiom, are of little interest in finite spaces as they are satisfied only by the 
discrete topology, i.e., the collection of all subsets of X.) 

Many aspects of finite topologies can be given convenient graph-theoretic represent- 
ations. If  the points of the space are represented by the vertices of a graph and there 
is an edge joining vertices p and q whenever either B~ c Bq or Bp ~ B~, then the 
result is the comparability graph of the irreducible basis. If Bp ~ Bq, then there are 
no open sets which contain p but not q and hence no closed sets which contain q 
but not p. This implies B* c B* so that the inclusion relations among the co- 
topology basis elements are the inverse of those for the topology and, in particular 
the comparability graphs of topology and cotopology are isomorphic. The direction 
of the inclusion relations can be indicated by a directed graph (digraph) in which 
Bp ~ Bq is represented by an edge from p to q. The digraph for the cotopology is 
then the converse of  that for the topology, i.e., it is the latter digraph with the 
Orientation of each edge reversed. Since inclusion is transitive, these digraphs must 
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be transitive; it has also been shown that every transitive digraph corresponds to a 
topology [7]. Finally, a comparability graph has the same number of components 
in the graph-theoretical sense as its topological space has topological components 
since a component of X corresponds to a set of vertices none of which are com- 
parable to the vertices of any other component. Thus, in particular, a connected 
space corresponds to a connected comparability graph. 

3. A Topology for Alternant Molecular Graphs 

To illustrate the application of topological concepts to molecular structure, con- 
sider the carbon skeleton of a saturated or a conjugated, unsaturated hydrocarbon 
represented as a graph G, the vertices of which represent the carbon atoms in the 
former case and either carbon atoms or p-orbitals in the latter and the edges of 
which represent the atomic adjacency relations. We shall regard the vertices as the 
points of X and we seek to construct a topology Y which reflects the molecular 
structure. One approach is to start from a collection of sets which express the 
atomic connectivity. In the "bond  topology" [4] this was accomplished by taking 
the collection of 2-sets representing the edges of G as a subbasis for 3--. This pro- 
cedure guarantees that all bonds are open sets and the resulting topology, with a 
suitably defined bond "weight"  function, gives an excellent account of bond 
strength patterns for small 7T-systems. In spite of its successes, the bond topology 
has some unsatisfactory features: 

1. Connected molecules do not always yield connected spaces. 
2. There is a high incidence of homeomorphism, that is, distinct molecules that are 

topologically indistinguishable. 
3. In a given molecule there are at most seven topologically distinct bonds so that 

subtle variations in bond strength in large molecules are lost. 

These characteristics are all, in one way or another, consequences of the fact that 
the bond topology yields highly disconnected spaces which are made up of only 
three different kinds of components containing 1, 2 or 3 atoms each. It would be 
highly desirable to be able to describe a molecule in terms of a connected topological 
space. 

The discussion in Sect. 2 suggests an alternate way of topologizing a molecular 
graph which will achieve this objective. Specifically, since there is a unique basis 
comparability graph associated with every finite topology, we consider the converse 
problem and ask if the graph of any molecule can be regarded as the comparability 
graph of some topology, which we shall call the graph topology for that molecule. 
Unfortunately, not all molecular graphs can be so regarded, but only those whose 
edges can be oriented to yield a transitive digraph. 

Not every graph can be transitively oriented. For example, the odd cycles C5, C7, .. �9 
cannot be. Any orientation of their edges must contain somewhere the configuration 

a b e 
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but this is not transitive since the edge (a, c) is absent. This suggests that transitively 
orientable graphs in general are characterized by a plethora of  3-membered rings. 

Consider the subclass of transitively orientable graphs which contain no 3-mem- 
bered rings. When oriented, such a graph must not contain the above forbidden 
configuration. The only possibility is that for every vertex either the in-degree or 
the out-degree must be zero. Thus it must be possible to partition the vertices of the 
graph into two sets such that no two vertices in the same set are adjacent, i.e., the 
graph is bipartite or, in the case of ~r-electron systems, the molecule is alternant. 
Furthermore, the graph has exactly two transitive orientations and these are con- 
verses of each other. 

Alternants are thus topologically distinguished from nonalternants (or, at least, 
those nonalternants containing cycles of length greater than three 1) by the fact that 
their graphs are derivable as the comparability graph of  a topological space. 

To the two transitive orientations, D, D' of a bipartite graph G, there correspond a 
unique topology-cotopology pair for which D and D' express the inclusion relations 
among the irreducible basis elements. Recalling from Sect. 2 that an edge (p, q) in 
D means that B~ D Bq the basis elements of the topology induced by D are given 
by 

/N  
B, = {p} = {p} u {q [ q adjacent from p}. 

Thus vertices of zero out-degree are open singletons while vertices of zero in-degree 
are closed singletons. 

These considerations can be illustrated by the following example: 

1 2 3 4 

G 

{1, 2) {2} {2, 3, 4} {4~ {1/ {I, 2, 3} {3~ {3, 4} 

D D' 

where the basis sets induced by D and D' are indicated above the corresponding 
atoms. The topology corresponding to D is: 

ar  = {~, {2}, {4}, {1, 2}, {2, 4}, {1, 2, 4), {2, 3, 4}, {1, 2, 3, 4}} 

and the topology induced by D', which is the cotopology of J ' ,  is 

J-* = {~, {1}, {3}, {1, 3}, {3, 4}, (1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4)}. 

(Since 3- and J-* are generated completely symmetrically from G, it is purely a 
matter of convention which is called the topology and which the cotopology.) 
Note that while neither 3" nor ~--* alone properly reflects the symmetry of G in this 
example, the totality of open and closed sets does so. (It turns out that, even in 

1 Nonalternant structures which contain only 3-membered rings are also transitively orient- 
able and hence are topologizable in the same manner. However a much larger number of 
topologies is produced, e.g., cyclopropenium has six distinct transitive orientations. 
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cases where Y and J-* separately have the correct symmetry, it is still necessary to 
consider both for a complete description of the structure.) 

To gain some insight into the structures of these spaces we need to devise a quanti- 
tative measure of the contribution of each bond in the molecule to the space. As 
such a measure one might take either n(p, q), the total number of open and closed 
sets containing the bond (p, q), or - as in the bond topology - c(p, q), the sum of 
their cardinalities. For the current example: 

n(1, 2) = 5, n(2, 3) = 4, 

c(1, 2) = 16, c(2, 3) = 14. 

For comparison the Htickel bond orders are 

p(1, 2) = 0.894, p(2, 3) = 0.447. 

By either measure, the graph topology gives the correct order, but the magnitude 
of the variation is too small and not as good as that given by the bond topology. 
We shall see in further examples that the graph topology in general yields rather 
small variations among bonds, but it has the great advantage over the bond 
topology of continuing to yield variations under conditions where the latter gives 
featureless uniformity. 

The two other key features of the graph topology which follow directly from the 
manner in which it is constructed are: 

1. Since a comparability graph and its associated topological space have the same 
number of components, the space of a molecule is connected if and only if the 
molecule is connected. 

2. A finite topology induces a unique comparability graph; hence distinct molecular 
graphs have distinct topologies, i.e., the only homeomorphic molecules are 
stereoisomers. 

Thus the graph topology yields a global description of molecular structure which 
assigns a unique connected space to every alternant molecule. In contrast, the bond 
topology corresponds to a local description, consisting of many components which 
reflect primarily the nature of the terminations of the molecule. This can be 
illustrated with our current example, for which the bond topology is [4] 

3-bona = {~, {2}, {3}, {1, 2}, {2, 3}, (3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}, 

which corresponds to the digraph 

1 2 3 4 

This shows the power of the graph-theoretical approach to finite topologies; it is 
far from obvious from merely inspecting the collection of open sets whether or not 
it describes a connected space. 

A final topological property of the spaces of the graph topology is that they are To 
spaces, a property which follows from the fact that their digraphs contain no 
vertices with both in-degree and out-degree nonzero and hence they contain no 
directed cycles [7]. 
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There is a second, quite different way of arriving at the graph topology for molecules 
which perhaps offers some conceptual advantage over the rather abstract approach 
just outlined and which also establishes a connection between the finite topological 
spaces considered in this paper and the continuous spaces which are the usual 
concern of topology. In this alternative point of view we regard a molecule as a 
connected region of real space which is partitioned into contiguous, disjoint regions 
which are identified with the constituent atoms. Our previous example will illustrate 
the concept. Consider the real line R partitioned into four regions: 

@ | | | 

where regions 2 and 4 are open intervals, i.e., they do not contain their boundary 
points, and regions 1 and 3 are closed intervals. If  we regard each region as a point 
in a new space and construct for each such point the smallest set containing that 
point which corresponds to an open interval of R (the open intervals are a basis for 
the "usua l "  topology of the real line), we find 

(9 @ @ | 

{1,2} /2} {2, 3, 4} (4} 

which is the basis of the graph topology of 

I 2 3 4 

A space topologized in this manner, by identifying its points with regions of the 
original space and constructing the basis as illustrated, is called a quotient space. 

@ | 
As the example shows, the partition(~)]((~)leads to an e d g e :  ~ . in the 
digraph for the quotient space. If real space is partitioned into regions which are 
either open or closed, the vertices of the digraph will have either zero in-degree or 
zero out-degree and the topology of the quotient space is indeed the graph topology. 

The graph topology can also be regarded as a quotient of three-dimensional real 
space, RL The molecule is first enclosed by a closed surface (multiply connected 
if the molecule contains cycles) which is then partitioned into contiguous open and 
closed regions corresponding to the atoms. As an illustration, consider the molecule 
whose graph is 

1 

. / ;  4 

6 
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-'/': /' 4 A 
I 

/;--A IlY Fig. 1. Partition of real space corre- 
sponding to 1,2-dimethylenecyclo- 
butene. The shaded and clear regions 
denote dosed and open volumes corre- 
sponding to the individual atoms 

This is represented as a partitioned volume of real space as shown in Fig. 1. As 
before, we regard each atomic volume as a point and construct for each a tom the 
smallest set containing that atom which corresponds to an open volume of real 
space. This construction can be shown to yield for the basis of the quotient top- 
ology: 

~1,2} 
~ . ~ 2 )  {2, 3, 4} 

~ / ~ ,  4, 5, 6} {4} 
(6) 

which is the graph topology of 

The concept of  a quotient space also provides an insight into the relation between 
the graph topology and the bond topology in the sense that it allows one to build 
a molecule with the former topology out of pieces having the latter. (The process 
we are about to describe is known formally as an "at taching map" .  Rather than 
give a rigorous discussion we present simply the intuitive ideas involved.) The only 
three connected molecules in the bond topology have topologies corresponding to 
the digraphs: 
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As an example, consider a space consisting of two of these fragments 

{1} {1,2} {2', 3} {3} {3, 4} 

1 2 2" 3 4 

where the indicated sets are the irreducible basis elements. If  we now construct a 
quotient space in which points 2 and 2' of  the original space are identified with point 
2 of the new space we get for the basis of the quotient topology: 

{1} {1,2,3} {3} {3,4} 

1 2 3 4 

which corresponds to the graph topology of 

1 2 3 4 

(This particular type of quotient space formation is called the "past ing"  of two 
spaces.) 

A slightly more complicated example of this pasting process is: 

1 1 ) 4 4 >  
2 2 

4 5 
4 �9 ) �9 

l 

S Y 

2 

1 

3" 4 5 ~ " , ~  3 4 5 

2 

Although we choose not to give a formal proof, these examples should make 
plausible the conclusion that the space of any molecule with the graph topology 
can be produced in a unique manner by a pasting of the three connected fragments 
of the bond topology. 

4. Combinatorial Properties of the Graph Topology 

In spaces of infinitely many points, e.g., real space, topology is usually employed 
to examine questions of convergence and continuity. In finite topological spaces, on 
the other hand, the most important properties are combinatorial ones such as the 
numbers of sets of various kinds. In the bond topology it was possible to give 
closed-form expressions for the combinatorial properties of a general molecule [4] 
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as a result of the fact that these spaces consist of a limited variety of small com- 
ponents. In the connected spaces of the graph topology such a succinct statement of 
the results is not possible although the combinatorics are still tractable. In this sec- 
tion we develop the machinery required to analyze the combinatorics of the graph 
topology. 

For an alternant molecular graph G we define the function , (G) to be the number 
of open sets in the graph topology of G. (Since there is a one-to-one correspondence 
between open and closed sets, the number of sets in the cotopology is the same, i.e., 
it does not matter which of the two transitive orientations D, D' of G we consider.) 
Recall that there is a unique irreducible basis set By associated with each vertex p of 
G and that the topology J is the collection of all unions of basis sets. However, not 
all such unions are distinct. Consider an arbitrary union of basis sets: 

V = B1 U B2 u . . . .  

If, for example, B1 c B 2 then B1 can be eliminated from the union without affecting 
the result. Thus to produce only distinct unions it is required that no two elements 
entering into the union be comparable. Since comparable basis elements are those 
corresponding to adjacent vertices of G, distinct open sets are guaranteed if only 
those unions of basis elements are formed which correspond to sets of vertices of 
G no two of which are adjacent. (In graph theory such a set of vertices is called a 
stable set of G.) Thus ,(G),  the cardinality of the graph topology of G, is equal to 
the number of stable sets of G. 

With this established, the basic recursion formula for ~(G) is readily derived. 
Consider the relation of the stable sets of G to those of G with a vertex p removed. 
Every stable set of G - p is also a stable set of G. The other stable sets of G arise 
from unions o f p  with stable sets of G - p which contain no vertex adjacent to p;  
the number of such sets is , (G - p - Av), where A v is the set of vertices of G 
adjacent to p. Thus the recursion formula for , (G) is 

. ( 6 )  = . ( 6  - p )  + ~(6  - p - A~). (1) 

Suppose G is a two-component graph G1 u G2. Then the stable sets of G arise from 
unions of any stable set of G1 with any of G2. The second basic formula follows by 
induction: 

One final result will complete the machinery for calculating e(G) for any molecular 
graph. Consider a linear chain of n atoms, the path P~, and the effect of adding a 
point to one end to produce P~ + 1. The recursion formula (1) gives 

~(P.  + 1) = - ( P . )  + ~ (P . -1 ) ,  (3) 

which is identical to the reeursion relation for the Fibonacci numbers 

F=+I : F= -4- F=-t,  Fo : F1 = 1. (4) 
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Table 1. Fibonacci numbers and g(G) for paths, cycles and 
iso-paths 

n F .  o(P,)  a o(Cn) b c~(i - Pn) c 

0 1 1 
1 1 2 
2 2 3 3 
3 3 5 4 
4 5 8 7 9 
5 8 13 11 14 
6 13 21 18 23 
7 21 34 29 37 
8 34 55 47 60 
9 55 89 76 97 

10 89 144 123 157 
11 144 233 199 254 
12 233 377 322 411 
13 377 610 521 665 
14 610 987 843 1,076 
15 987 1,597 1,364 1,741 
16 1,597 2,584 2,207 2,817 
17 2,584 4,181 3,571 4,558 
18 4,181 6,765 5,778 7,375 
19 6,765 10,946 9,349 11,933 
20 10,946 17,711 15,127 19,308 

1 2 n 1 i 
a P a = ~. .z , .  �9 - " - . 3  4 n 

- -  �9 �9 �9 �9 

Since P0 has one stable set ( ~ )  and  Pz has two ( ~ ,  {1}), i.e., o(P0) = 1 and or(P1) = 2, 
we have 

cr(P,) = F ,  +z. (5) 

The general  s trategy for  evaluat ing a(G) is to use the recursion fo rmula  (1) as often 
as needed to e l iminate  all t r ivalent  vertices f rom G and then to evaluate  the result ing 
collect ion o f  paths  and  unions o f  paths  with the help o f  (2) and  (5). (Table  1 lists 
the first 20 F ibonacc i  numbers  a long with a ( G )  for three simple homologous  series 
o f  molecules.)  This procedure  can be i l lustrated with the example  of  naphthalene ,  
where a(G) is denoted  by enclosing the graph  in square brackets .  

= o'(Pg) + o'(P 3 W P3) 
= '~(Pg) + ['~(P3)] 2 

= Fzo + F~ 
= l I 4  
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In order to evaluate the contributions of individual atoms and bonds to the spaces 
of the graph topology, a procedure for enumerating the number of  open or closed 
sets which contain a given subset A c X is required. To accomplish this we make 
use of  the fact (cf. Sect. 2) that the collection of open sets containing A is iso- 
morphic to the subspace topology of X - ,4 so that, in particular, they contain the 
same number of  sets. Similarly the number of  closed sets containing A is equal to 
the number of sets in the subspace topology of X - A. 

Considering first the number of open or closed sets containing a given atom, recall 
from Sect. 3 that for a given orientation D of G each atom is either open or closed. 
I f  the atom p is open, then 

/ x  
{p} = {p}, {p} = {p} k3 Av, (6) 

and the number of open and of closed sets containing p are 

no(p)  = a ( G  - p), and 

no(p) = ,~(G - p - Av), (7) 

respectively. I f  q is closed, one finds similarly 

no(q )  = a ( G  - q -  A~), 

no(q)  = a ( G  - q) .  (8) 

Note that in either case, from (1) one has 

no(p)  + no(p)  = a ( G ) .  

Enumeration of the number of  open or closed sets containing a given bond (p, q) 
proceeds similarly. I f p  is the open member of  the pair, 

{p, q} = {p} u {q) u A q 

--  {q) u A o, (9)  

where the second equality follows from the fact that p ~ A~. Similarly 

{p, q) -- {p} u Ap k3 {q} 

= {p) u A~. (10) 

Therefore 

no(p,  q )  = a ( G  - q - Aq), 

n o ( p , q )  = a ( G  - p - A~), 

and the total number of open or closed sets containing (p, q) is 

nvq = no(p,  q )  + no(p,  q )  

= cr(G - p - Av) + ~(G - q - Aq). (11) 

It is convenient to define av = a(G - p - Av) so that (11) becomes 

n~  = ~ + ~ .  (12) 
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Continuing with the example o f  naphthalene 

2 

one finds 

67 

= F ~ =  25, 

= F8 = 34, 

= FoF2 + F 4 =  31, 

and thus the four  inequivalent bonds are ordered as follows: 

n23 = 65, n3,3 = 62, nl~ = 59, n1,1 = 50, 

which is exactly the same as the ordering given by the bond orders p~j f rom molecular 
orbital theory:  

P23 = 0.725, P3,3 = 0.603, PI2 = 0.555, P1,I = 0.518. 

5. Properties of the Function a(G) and Related Quantities 

The value of  ~(G) turns out to be quite sensitive to the details o f  molecular struc- 
ture, 2 particularly to the extents of  branching and cyclization. This is illustrated in 
Table 2, which lists or(G) for all six- and eight-atom ~-graphs (i.e., graphs represent-  
ing the carbon skeletons o f  conjugated ~-electron systems) and in Table 3, which 
gives ~(G) for the carbon skeletons of  all alkanes from C5 through C8. It may  be 
seen that  this function does a good job o f  distinguishing among  these structures 
al though it does not  quite reach the ideal o f  assigning a different number  to every 
distinct structure. Inspection o f  the tables also shows that or(G) increases with 
branching and decreases with cyclization. 

2 The function ~(G) is similar in this respect to Hosoya's (Ref. [3]) "topological index", which 
is equal to the number of stable edge sets of G, i.e., it is cr of the line graph of G. 
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The latter observation can be made more quantitative as follows. Consider the 
process of adding to a graph G the edge epq joining vertices p and q which are not 
adjacent in G. From the basic recursion relation (1) we have 

cr(G + evq) = cr(G - p) + ~r(G - p - q - A,), (13) 

and 

~(G) = o(G - p )  + ~(G - p  - AT) 

= a ( G - p ) + ~ ( G - p - q - A T )  + , ~ ( G - p - q - A , - A q ) .  (14) 

Combining (13) and (14) yields 

G(G + e , q )  = (7(G)  - a ( G  - p - q - A T - A q ) ,  (15) 

which shows that adding a new edge to a graph always decreases or(G). 

Remarkably, among the alkanes a(G) appears to be sensitive to the same aspects of 
molecular structure as are some of their physical properties. Fig. 2 shows the 
empirical correlation between G(G) and heats of formation and Fig. 3 illustrates a 
similar correlation with boiling points. In both cases the correlations are quite 
good, particularly for the lower alkanes. This is perhaps not too surprising, since 
it is known from empirical studies [1] that these physical properties are highly 
correlated with molecular branching. 

In the two examples of butadiene and naphthalene given earlier it was found that 
the quantities n~j, the total number of open and of closed sets containing the bond 
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Fig. 2. Alkane heats of formation vs. ~(G). The straight lines serve merely to group the points 
and have no theoretical significance 
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Fig. 3. Alkane boiling points vs. ~r(G). The straight lines serve merely to group the points and 
have no theoretical significance 

(i , j) ,  are an excellent measure of ~r-bond strengths in that they yield the same 
ordering as do the bond orders calculated from molecular orbital theory. Table 4 
lists the values of  n, s and rr-bond orders for a collection of 77 distinct bonds in 
22 molecules. The intramolecular correlation between the topological and quantum- 
mechanical measures of  bond strength is almost perfect. (Bonds ordered differently 
by these two measures are indicated by an asterisk in the table.) Even such features 
as bond alternation in linear polyenes and accidentally, i.e., non-symmetry-dictated, 
equal bond orders are accurately reflected by the topological measure. 

In order to compare bonds in different molecules it is necessary to normalize the 
n~j in some manner. The most obvious course is to employ the quantity n~j/cr as a 
measure of bond strength. Fig. 4 shows, for the molecules in Table 4, the ~r-bond 
order plotted against n~s/cr. The intermolecular correlation of these two quantities is 
fairly good but definitely inferior to the intramolecular correlation. We have 
examined a number of two-parameter forms as empirical expressions of  this correla- 
tion; a convenient expression which works best for p ~> 0.6 is 

Pij = (3nij/2~r) 9/~, 

however the best overall fit is 

p~j = exp 3.81(n~j/~ - 0.67), (16) 

for which the correlation coefficient is r 2 = 0.86. This function is plotted in Fig. 4. 
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Fig. 4. Hiickel bond order vs. n,j/,~ for the bonds in Table 4. The equation of the solid curve is 
p = exp 3.81 (n/c~ - 0.67) 

From the scatter of the points evident in the figure, it is unlikely that any other 
expression will do significantly better) 

6 .  S u m m a r y  

Topology provides the necessary and appropriate tools for discussing the non- 
metric aspects of molecular structure. It is as useful in probing the structures of the 
spaces of finitely many points which arise naturally in this context as it is in its 
more usual application to continuous spaces, although the details of the analysis are 
quite different in these two cases. 

There is an essentially unique pair of topological spaces associated with any altern- 
ant molecular framework) This association can be regarded either as a consequence 
of the fact that any finite topological space induces a unique graph whose vertex 
set consists of the points of the space or as a result of partitioning the real space 
occupied by a molecule into atomic subregions which become the points of the 
resulting quotient space. Many concepts from general topology retain their useful- 

a Note the contrast to the situation in the bond topology for which bond orders are l i n ea r l y  
correlated with the sum of the car d ina l i t i e s  of the closed sets containing the bond. The very 
different measures required in these two cases reflect the profoundly different structures of the 
topological spaces. 
4 That this is not so for nonalternants points up the essentially topological distinction between 
these two classes of structures. As yet we have been unable to discover a "natural" way of 
topologizing nonalternants. 
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ness and intuitive content in these molecular topological spaces. For  example, a 
connected topological space corresponds to a connected molecule and the only 
molecules which are homeomorphic  are stereoisomers. However,  finite topological 
spaces differ f rom continuous spaces in that many of  the most  important  questions 
regarding their structures are combinatorial  in nature, that  is, questions as to the 
existence and number  of  subsets satisfying certain conditions. Thus, for example, 
the number  of  open sets in a molecular space is a measure of  molecular complexity 
and the number  o f  open sets and closed sets containing a pair o f  adjacent atoms is a 
measure of  the strength of  the bond between them. These combinatorial  questions 
turn out to be highly amenable to solution by graph-theoretical methods - another 
consequence of  the intimate association between finite topological spaces and 
graphs - and the necessary mathematical  machinery to this end has been devised. 

Some of  the quantities resulting from analysis of  the structure of  these spaces turn 
out to be well correlated with physical properties such as heats of  formation and 
bond strengths. F rom this one might hypothesize that such properties are in large 
par t  determined by the molecular topology, al though at present we are unable to 
show precisely how or where the topology constrains the physics. 
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